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Laboratory and numerical experiments have been conducted to study the secular 
spin-up of both a homogeneous and a thermally stratified rotating fluid in a right 
cylinder. In these experiments, the angular velocity of the container increases linearly 
in time from some initial rotation rate a t  t = 0. A simple quasi-geostrophic model is 
developed to describe the adjustment of the fluid over the characteristic spin-up time 
scale to the constant angular acceleration of the basin. Good agreement is found 
between the observed interior temperature and azimuthal velocity fields and the 
theory in both the homogeneous and stratified secular experiments. This result is in 
contrast to the much faster adjustment observed in stratified instantaneous spin-up 
experiments reported earlier. The main difference between these experimental cases 
is the inability of secular forcing to excite energetic inertial-gravity-wave transients 
during the initial phases of secular spin-up. Thus, the asymptotic theory which has 
filtered out these initial higher-frequency transients is accurate even though the 
inertial period is not much smaller than the characteristic spin-up time scale. 

1. Introduction 
Spin-up is the generic name given to the transient motions occurring in a fluid as it 

adjusts from one state of nearly rigid-body rotation to another. The importance of this 
spin-up processin rotating homogeneous flows has been clearly explained by Green- 
span & Howard (1963) who showed how the viscous Ekman layers could, by means of 
their suction, induce relatively weak secondary circulations which profoundly affect 
the interior vorticity and angular momentum fields. By this general mechanism, the 
Ekman layers completely control the transient spin-up process and bring the interior 
fluid to its new state of nearly rigid-body rotation in a time scale of O(H/J(vSZ)) ,  where 
i2 is the initial angular velocity of the container and fluid, v is the kinematic viscosity, 
and H is a characteristic height of the container. In the case of the spin-up of a 
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stratified rotating fluid, Holton (1965) first showed that, even though the Ekman-layer 
structure is unaffected by stratification, the interior vortex stretching caused by 
Ekman-layer suction would be balanced by the tilting of the isopycnal surfaces 
through the thermal-wind relation. Thus in the case of a, strongly stratified fluid, the 
effect of Ekman-layer suction would be limited to horizontal regions (adjacent to the 
Ekman layers) of vertical scale thickness S = L Q / N ,  where L is the characteristic 
horizontal scale of the container and N is the Brunb-Vaiskilii frequency. The fluid in 
these layers spins up to the new angular velocity in a time scale of O(S/.J(vsZ)). The re- 
maining interior fluid spins up in the much longer time scales associated with vorticity 
and density diffusion. The reader is referred to Greenspan (1968) and the review by 
Benton & Clark (1 974) for comprehensive presentations on the general spin-up process, 
the historical development of relevant conceptual models, and discussions of some of 
the important geophysical ramifications of the spin-up process. 

One of the more interesting applications of spin-up theory in geophysical fluid 
dynamics arises in the investigation of the internal rotation of the sun. Howard (in an 
informal seminar in 1970) proposed a hierarchy of rather basic theoretical models to be 
examined in relation to the solar spin-down mechanism. The first and simplest model is 
the instantaneous stratified spin-up problem already outlined here and reviewed by 
Benton & Clark (1974). In  the second model, named ‘secular’ spin-up by Howard, the 
fluid motion is driven by either the small but constant angular acceleration of the fluid 
container or by a small constant surface stress. This latter case is a more realistic model 
of the sun, where the angular momentum carried away by the solar wind can exert an 
appreciable torque on the outer layer of the solar atmosphere. Sakurai, Clark & Clark 
(1  97 1) have examined the stress-driven secular spin-up of a small-Prandtl-number 
stratified fluid in a cylindrical container while Clark et al. (1972) have studied the 
spherical problem for a stratified fluid of Prandtl number of O( 1). The two-dimensional 
stress-driven stratified spin-up problem has also been examined by Pedlosky (1968), 
Allen (1973), Blumsack (1972) and others as a fundamental conceptual model of 
coastal upwelling. 

We will present in this paper the results of an experimental and numerical study of 
the secular spin-up of a rotating thermaIly stratified Boussinesq fluid. The fluid 
container is cylindrical in shape and the fluid used has a large Prandtl number. As 
such, this work represents a logical extension of both the experimental studies of the 
instantaneous spin-up of a stratified rotating fluid conducted earlier by Buzyna & 
Veronis (1971) and Saunders & Beardsley (1975), and the corresponding numerical 
simulations of instantaneous stratified spin-up made by Barcilon et aE. (1975). In  these 
experiments, the angular velocity of the rotating cylindrical fluid container was 
rapidly changed by a small fract,ion and the resulting baroclinic adjustment by which 
the fluid spins up to the new angular velocity was investigated. The results of these 
experiments indicated that the interior of the fluid spins up more rapidly than pre- 
dicted by the quasi-geostrophic spin-up theories developed by Siegmann ( 1967), 
Walin (1969) and Sakurai (1969). Barcilon et al. (1975) obtained numerical solutions to 
the full axisymmetric problem and also found faster spin-up in the parameter range 
studied (see Saunders & Beardsley (1975) for a comparison of the observed experi- 
mental temperature field with the numerically predicted field). Barcilon et al. (1  975) 
also observed that the corner jet which closes the secondary circulation driven by the 
Ekman-layer suction is time-dependent over the spin-up time scale: the fluid in the 
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corner jet appeared to remain nearer the vertical side wall initially and thus gained 
more angular momentum due to lateral viscous diffusion of vorticity from the side 
wall during the early phases of spin-up than predicted. In  most of these numerical 
experiments and in the preceding laboratory experiment, the characteristic spin-up 
time scale was not much greater than the rotation period, a condition which tended to 
strain the validity of the quasi-geostrophic theory which has filtered out the initial 
inertial-gravity-wave transients. Benton & Clark ( 1  974) conclude that the flow 
observed in these experiments was clearly more complicated than that predicted by 
the quasi-geostrophic theory; however, a proper experimental test of this theory will 
require experiments in which the spin-up time scales for the dominant modes are much 
greater than both the rotation and the Brunt-Vaisala periods. To our knowledge, such 
experiments (either laboratory or numerical) have not been conducted. A second, 
alternative explanation for the observed discrepancy between experimental and 
predicted spin-up has been suggested by St-Maurice & Veronis (1975)) who re-exam- 
ined the instantaneous stratified spin-up problem using the method of multiple time 
scales. In  essence, they attempted to find interior and boundary-layer solutions uni- 
formly valid over the three important time scales, i.e. the rotation period, the longer 
spin-up time, and the much longer diffusive time scale which governs the final adjust- 
ment of the fluid to the new state of solid-body rotation. Their complete solution for 
the interior flow during stratified spin-up does contain a diffusive part which can be 
numerically significant on the spin-up time scale. The model problem which they 
consider has a simple one-dimensional periodic horizontal dependence and thus does 
not include the influence of lateral boundaries. Since Barcilon et al. (1975) have demon- 
strated that the structure of the flow near the lateral boundaries is clearly important 
in the laboratory and numerical experiments conducted in a cylindrical container, the 
diffusive correction found by St-Maurice & Veronis (1975) may not be applicable to the 
cylindrical problem. We are unaware of any laboratory or numerical spin-up experi- 
ments which have been studied over the diffusive time scale. 

In  this present study of secular spin-up, the angular velocity of the fluid container is 
changed linearly with time such that the non-dimensionalized angular acceleration is 
small. Our interest is focused on the fluid motions occurring on the basic spin-up time 
scale and to this end we will next present the simple quasi-geostrophic theory for 
secular stratified spin-up in $2,  which we will later compare with the experimental 
temperature and velocity fields in 3 4. The laboratory apparatus and experimental 
procedures and the numerical model are described in $ 3 .  An analysis of one homo- 
geneous secular spin-up experiment is also presented in § 4. 

2. Theoretical model 
A linear asymptotic model for instantaneous stratified spin-up in a cylindrical 

container with perfect insulating side boundaries has been thoroughly discussed by 
Walin (1969) and Sakurai (1969). We will derive here the modification of this model 
introduced by a small but constant angular acceleration of the fluid container. The 
equations considered are the usual Boussinesq approximation to the Navier-Stokes 
equations. We neglect the centrifugal component of the gravitational potential (thus 
neglecting Sweet-Eddington flow) and assume that the basic density stratification is 
linear with depth. This basic density state is maintained by a continuous vertical heat 
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FIGURE 1. (a) Model geometry. (a) Basic density profile. 

flux through the fluid. The temperatures on the upper and lower surfaces are held a t  
To + AT and To - AT respectively. The equation of state is simply 

P = po(l-a(T-To)), 

wherep, and To are the mean density and temperature respectively and 01 is the assumed 
constant coefficient of thermal expansion. The coefficients of thermal diffuaivity K and 
kinematic viscosity v are also assumed constant. The fluid container and forcing, and 
thus the response, are taken to be axisymmetric. The co-ordinate system used is the 
r ,  8, z cylindrical system. The length scale is chosen as the half-height of the cylinder H 
so that the cylinder is bounded above and below a t  non-dimensional heights z = + 1 
and - 1 respectively (see figure 1 ) .  The non-dimensional radius or aspect ratio of the 
cylinder is denoted by r,, and is assumed here to be of order unity. 

At t = 0, the angular velocity of the container starts to increase linearly from an 
initial value R,, i.e. Q ( t )  = a,+ (dQ/dt ) t  for t >, 0, where the angular acceleration 
d R / d t  is assumed to be constant. In the reference frame which continues to rotate a t  
the original angular velocity R, of the container, the interior fluid is forced from an 
initial state of rest by Ekman suction driven by the relative motion of the container 
top and bottom surfaces. Independent of the interior response, however, the azimuthal 
velocity scale V within the Ekman layers during spin-up is 

where T$ = l /R, EB is the characterist,ic homogeneous spin-up t.ime scale. We will use 
H ,  V ,  and T, as the appropriate length, velocity, and time scales and introduce t,he 
non-dimensional perturbation velocity, temperature, and pressure variables defined 
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where an asterisk denotes a dimensional variable. The principal non-dimensional 
parameters governing secular spin-up are the Rossby number R, Ekman number E ,  
Prandtl number u, and the stratification parameter B defined here by 

where N is the Brunt-Vaisalci frequency given by N 2  = agAT/H.  We will assume that 
the angular acceleration rate dfildt  is sufficiently small (dQ/dt 4 Qo/5'L) that the flow 
is essentially linear, i.e. R < 1.  We will also assume that E 4 1, and both B and the 
Prandtl number u are of order unity. With these assumptions the linearized and 
scaled continuity, momentum, and energy equations are 

E h t  - 2~ = -pr  + E ~ U ,  

E b t  + 2~ = + E ~ v ,  

E ~ W ,  = -pa+ EV2w + T ,  

EtT, + ~ B ' w  = ( E / g )  V 2 T ,  

1 
r 
- (PU), + u: = 0, 

where the operator 9 is defined by 

The fluid is initially a t  rest and the boundary condition in the original reference frame 
is simply 

u = rt6 
on all surfaces of the container. 

Following the general approach presented by Greenspan (1 908), we solve the result- 
ing combined initial-value-boundary-value problem for the interior flow using the 
method of matched asymptotic expansions. The axisymmetric velocity field is 
defined by u = v 6  + V x (@6). The streamfunction Y in the r ,  z plane is related to @ by 
r@ = Y .  We expand the dependent variables into interior and boundary-layer com- 
ponents using the perturbation series 

@ = @ o + ~ f @ l + ~ t @ 2 +  ...+go+ E+&+E:$,+ ..., 

where the carets denote the boundary-layer correction fields. The choice of velocity 
scale stated in ( 1 )  implies that  an O(1)  azimuthal flow will develop on the homo- 
geneous spin-up time scale, thus forcing the meridional circulation to be O(E3) by 
Ekman suction. The lowest-order interior monientum and temperature equations then 
reduce to 

2vo = P o r ,  VOt - 2@22 = 0, 0 = - p  oe + T 0, Fo,+JB2(+) T = 0. 

These interior equations may be combined to  show the thermal-wind balance 

2voa = To, (3) 
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and conservation of potential vorticity To 
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over the spin-up time scale. (Since the non-dimensional azimuthal velocity in the 
reference framefixed to the container, called the accelerating frame or AF, is related 
to V, in the original reference frame by the transformation 

v0(AF) = vO-rt ,  (51 

the potential vorticity of a fluid particle as viewed in the accelerating frame must 
decrease from zero everywhere in the interior at  a constant rate, i.e. rot(AF) = - 2.) 
Conservation of potential vorticity in the original co-ordinate frame also implies that 
the interior ffow obey the elliptic equation 

(6) 
1 1 
r - (r$2r)r + p $222 = 0 

(which is identical in form in either co-ordinate frame). 
The fluid must satisfy the no-slip boundary condition in the accelerating frame so 

that a boundary-layer analysis of the Ekman layers a t  z = _+ 1 yields for the Ekman 
suction relation 

$2 = T$(w,-rt) a t  z = f 1 .  

This may then be combined with the interior azimuthal momentum balance to yield 
an Ekman-layer compatibility condition on $2 that 

$ 2 t = T ( @ 2 z - $ r )  at x = + l .  (7) 

This expression clearly illustrates that the interior motions are forced by the boundary- 
layer suction of the quasi-steady Ekman layers which form on the accelerating horizon- 
tal surfaces. This compatibility condition and the governing potential-vorticity con- 
servation equation (6) together with the appropriate side-wall boundary condition 
then uniquely specify the lowest-order meridional flow p2 and indirectly wo. We will 
now discuss the side-wall matching condition. 

There are two boundary layers present on the side boundary: a transient O(E4) 
Stewartson layer, which serves to adjust the tangential velocity discontinuity at the 
wall, and a quasi-steady O(E4) buoyancy layer, which serves to adjust the temperature 
gradient and vertical velocity at  the side wall. Saunders & Beardsley (1975) show 
through an analysis of the buoyancy layer in the geometry relevant to these experi- 
ments that the side boundary may be considered (with very little error) to be a perfect 
thermal insulator. Pedlosky (1968) has shown for the case of a perfectIy insulated side 
wall that the vertical motion in the buoyancy layer is so strongly inhibited by the local 
buoyancy forces that the vertical boundary layer cannot carry any of the mass flux 
of the Ekman layers. The Ekman-layer flux is thus forced to return directly to the 
interior from the corner regions in order to close the secondary meridional circulation. 
This means that there is no radial influx into the interior from the side wall, the buoy- 
ancy layer vanishes to lowest order and the boundary becomes a streamline for the 
interior flow, so that 

$2 = 0 at  r = ro. (8) 
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This vanishing of the interior radial velocity at  the side boundary implies through the 
azimuthal momentum balance (2) that the interior zonal flow vo remain equal to 0 a t  
the side boundary, and, by Kelvin's theorem, the horizontal averaged interior vorticity 
at any level is 

(lo) = 2 q T 0 5 , r d r  T = 0 

over the spin-up time scale. Ekman suction causes interior vortex stretching and 
shrinking near the centre and outer boundary respectively, which shifts positive 
vorticity towards the centre without changing the total vorticity. This redistribution 
of relative vorticity causes a net increase in the angular momentum (rvo) within that 
layer. Note that in the completely inviscid problem (i.e. with no viscous boundary 
layers developing o n  any surfaces), the interior fluid locally conserves its angular 
momentum and continues to move in solid-body rotation with an absolute angular 
velocity of Go. This latter state is characterized by the relative zonal velocity fieId 
vo = - rt (for t > 0) when viewed in the accelerating reference frame. 

In the viscous case studied here, a transient Ef Stewartson layer develops on the 
vertical side wall which forces the zonal flow to satisfy the no-slip condition at the 
side boundary. As pointed out by Barcilon (1968)) this time-dependent Ef layer is 
essentially a Rayleigh-type viscous diffusive layer which grows to a scale thickness of 
O(E*) on the spin-up time scale. (The reader is referred to Barcilon (1 968) for a deriva- 
tion and discussion of the equations governing the time-dependent E i  Stewartson 
layer in a homogeneous fluid and to Buzyna & Veronis (1971) for a discussion of and 
observation of the transient Ef layer made in their experimental study of instan- 
taneous stratified spin-up.) In  this problem, the vertical velocity in the transient Ei 
Stewartson layer is sufficiently inhibited by the basic stratification that the zonal 
component of the boundary-layer correction velocity satisfies the one-dimensional 
viscous diffusion equation 

where the stretched side-wall co-ordinate is defined by p = E*(r - ro) .  As we will see, 
the local viscous-diffusion balance stated in (9)  must change near the corner regions 
where relatively strong vertical velocities do occur near the side boundary. 

The solutions for the lowest-order interior velocity and temperature fields are then 

00,  = a o p p ,  19) 

sinh m, z ( aror) 
J1 2 

$z = Z - ( l - e - f l n t )  C n  
2mn cosh m, 

Cn cosh m, z 
Pn cosh m, 

v0 = +Z-((IB, t+e-f l*t- i )  

sinh mn z 

( Jo - 7 

Cn 
P n  cosh rn, 

To = - C.2B-((p, t+e-ant-  1)  

where m, = Ban/ro, (p, = m, cosh WL,, aft is the nth root of the J1 Bessel function, erfc 
is the complementary error function, and p is the stretched co-ordinate defined earlier 
for the transient E i  side-wall layer. The coefficients C, are defined by the Bessel- 
Fourier expansion 

so that C, = - 2r0/anJ0(an). 
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FIGURE 2. Schematic diagram of the test cell. 

The interior solutions are composed of an infinite set of modes with each mode decaying 
with distance away from the end plates at  z = -c 1.  The characteristic vertical pene- 
tration scale of each mode 8, is related to the characteristic horizontal length scale 
8, = ro/an by the conservation of potential vorticity constraint (6) which requires 
that B6,/8, N 1. As mentioned before, each mode then spins up in its own non- 
dimensional time scale of O(,!?;l). This is the same time scale as for a homogeneous fluid 
of thickness 8,,. Since we will use these solutions to help describe the experimental 
results,we will postpone our discussion of their properties until after the experimental 
apparatus and procedure and the numerical models are briefly described. 

3. Experimental and numerical work 
3. I. Experimental apparatus and procedure 

The basic experimental apparatus used in these experiments on secular spin-up has 
been described in detail in the earlier study of instantaneous spin-up by Saunders & 
Beardsley (1 975). A brief summary of that description will be given next for complete- 
ness. The fluid container consisted of a Plexiglas cylinder 8.89 cm high and 10.03 cm 
in radius (see figure 2). The wall thickness of the cylinder was about 1 cm. This cylinder 
was bounded on the top and bottom by 0.6 cm thick glass plates, glass being chosen for 
its relatively high thermal conductivity and optical transparency. The cylinder and 
glass plates were sealed inside a larger Plexiglas box with spaces arranged above and 
below the glass plates for the circulation of heating and cooling water. The interior of 
the cylinder was filled with 0.01 cm2/s (nominal) viscosity silicone oil. This oil was 
chosen as the working fluid for its relatively large coefficient of thermal expansion and 
low electrical conductivity; this latter property allowed the use of uninsulated ther- 
mistors in monitoring the internal temperature of the fluid. As shown in figure 2, the 
space surrounding the cylinder between the glass plates was filled with a high viscosity 
silicone oil; the rapid spin-up of this surrounding fluid was intended to decrease the 
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FIGURE 3. Thermistor positions and numbering scheme. The co-ordinates ( T ,  z )  of thermistor 
number n are listed as ~ ( T / T , , ,  z) : l(0.9375, - 0.875) 2(0.9375, - 0.750) ; 3(0.9375, - 0.500) ; 
4(0.9375, 0) ; 5(0.875, -0.875) ; 6(0.875, - 0.750) ; 7(0.875, - 0.500) ; 8(0.875, 0) ; g(0.750, 
-0.875) ; lO(0.750, -0.750) ; li(0.750, - 0.500) ; 12(0.750, 0) ; 13(0.500, - 0.875) ; 14(0.500, 
-0.750) ; 15(0.500, - 0-500) ; 16(0.500, 0) ; 17(0, - 0,875) ; 18(0, -0.750) ; 19(0, - 0.500) ; 
20(0, 0). Thermistors 3 and 9 are broken. 

radial heat flux and improve the perfectly insulating side wall approximation made 
in 92. 

The box containing the fluid test section was mounted on an ultra-stable air- 
bearing turntable designed for these spin-up experiments by Saunders & Beardsley 
(1975). The turntable was directly driven by a small synchronous motor and, for the 
experiments described, a typical rotation rate a,, = l r a d l s  was used. A constant 
angular acceleration of the turntable was obtained in the following manner. The 
output of a voltage-controlled oscillator driven by a linear-ramp generator was ampli- 
fied and fed to  the synchronous motor driving the table. The angular velocity of the 
table was then a linearly increasing function of time and the adjustable slope of the 
ramp function set the rate of angular acceleration. 

The vertical temperature gradient in the test section was maintained by heating 
the upper plate and cooling the lower plate by running hot and cold water through the 
spaces above and below the glass plates respectively. The temperature was controlled 
by two larger constant-temperature water baths to within f 0.05 "C. The temperature 
on the upper side of the bottom plate was found to vary by less than & 0-02 "C during 
a typical experiment. A typical temperature difference of 8°C was maintained be- 
tween the two water baths. 

The fluid temperature field was measured using 18 thermistors placed in the interior 
of the test cylinder. Twenty thermistors were originally available, but two had failed 
and could not be easily replaced for these sets of experiments. The location of the 
thermistors is shown in figure 3. The nominal diameter of a thermistor was 0.025 cm and 
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0.005 cm diameter wire was used to suspend the thermistors along radii of the cylinder. 
The estimated torque exerted on the fluid by the drag of the wires and thermistors is 
insignificant in comparison with the torque exerted by the solid boundaries. 

The fluid temperature data were taken sequentially by means of a computer-con- 
trolled stepping switch which changed the thermistor in the appropriate arm of a 
Wheatstone bridge. The order of sampling was the same as the numbering scheme of 
the thermistors. The time needed to sample all the thermistors was about 4.5 s or 
typically somewhat less than one rotation period. The analog output of the Wheat- 
stone bridge was then amplified, low-pass filtered, and digitized using an analog to 
digital (A/D) converter controlled by a minicomputer. Before beginning a run, the 
system was allowed to spin up for 2-4 h. When the interior had reached thermal 
equilibrium as determined from the thermistor output, the experiment was started, 
i.e. both the angular acceleration or deacceleration of the apparatus and the tem- 
perature sampling program began. Data was then usually acquired for the next four 
or five homogeneous spin-up times. 

3.2. The numerical model 

The numerical scheme used here to simulate the laboratory spin-up experiments 
employed finite-difference formulations of the full axisymmetric Boussinesq Navier- 
Stokes equations written in cylindrical co-ordinates, i.e. 

where p denotes the pressure and po the reference density. The equations for tem- 
perature and continuity are 

a 
(ruT)--(wT)+K at r ar a x  

r ar 

aT 1 a - = --- 

i a  aW -- (ru)+az = 0. 

We shall first discuss the stretching of the grid mesh and the spatial differencing, 
then the time differencing and the method used to find the pressure. The stretching 
of the mesh was accomplished by the use of the function [ = (eVIrl - i)/(er/?Z + I ) ,  where 
r, is a normalization constant that controls the stretching in the lth boundary layer. 
For equal increments A[ of the function ti = iA6,  a set of co-ordinate values ri can be 
generated such that Ar = ri - constitute the variable mesh spacings. A similar 
transformation is effected between r/ and z. It must be pointed out that the equations 
are not transformed to a new co-ordinate system [ and 7, but are directly differenced 
on the new grids ri and zk;  the functions [ and r/ merely serve the purpose of creating a 
smoothly varying r and z mesh. The grid was stretched in order to resolve the relevant 
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FIGURE 4. Numerical grid schematic, showing the locations of different grid nets used to com- 
pute the different dependent variables. a, vertical velocity; e, radial velocity; x ,zonal velocity 
pressure. 

boundary layers. The criteria used to resolve the Ekman layer are described in Warn- 
Varnas et al. ( 197 8 ) .  

The differencing of the advection terms will be illustrated on the transport part of 
the radial velocity equation (13). The scheme was presented for constant grids by 
Piacsek & Williams (1970). We shall denote the co-ordinate axes by ri and zk,  the 
time by t ,  = nAt ,  and the value of a dependent variable $ as $ ( T i ,  zk, 6,) = $ h t k  with the 
superscript denoting a time level and the subscripts a mesh point location in space. 
Reference should be made to figure 4 for inspecting the arrangement of the dependent 
variables on the various subsets of the staggered mesh. Using these symbols, we have 

1 
4ri bi++ [ri+)(ui+l+ ui) %+l- ri-*(Ui + %-l) % - i l k  

1 
+ - [(wi+* + Wi-&)k+& % , k + l -  (wi+* + w i - i ) k - i  %,k - l ]*  

4Azk+) 

The remaining terms in (13) are differenced as follows: 
(a)  the pressure term, 

( b )  the Coriolis and curvature term, 
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and (c) the friction terms, 
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The pressure is found from a Poisson's equation obtained from taking the divergence 
of the system (13) and (15). Thus 

(18) -- - -V2p+V.(A+C+F+E},  
at 

where A(A,,A,), C(C,, 0 ) ,  F ( 4 ,  Pw), and E(0,agT) are the advection, Coriolis, 
friction, and external force terms in the u and w equations, respectively. The time 
differencing of the system can be represented using the same notation as 

where 1 = u, v,  w and FF+l? n, n-l is the Dufort-Frankel scheme given by 

- W - l -  $?-d 
Axi 

where x is any independent variable. 
Time differencing ( 18) yields 

Dn+l- Dn-1 

2A.t = - V2p + E n ,  

where 3% is the second term on the right-hand side of (18). The usual procedure is to set 
Dn+l = 0 but to compute the small but non-zero divergence Dn-l due to machine 
round-off errors, and iterate (19) to obtain a pressure which compensates for it in 
equations (13) and (15). 

The Poisson equation is solved by an AD1 iterative approach as 

where r, are the iteration parameters with I denoting the iteration numbers. P i , k  is the 
pressure and Xi, the source term on the grid point ( i ,  k). The continuum second deriva- 
tive operators are understood to represent their appropriate finite-difference analogues. 
The boundary conditions on the pressure are of the Neuman type, ap/as = G, where s 
is the distance normal to the boundary and G is obtained from (15) by applying it on 
the boundary. The optimum iteration parameters are calculated by the method out- 
lined in Wachpress (1966). This method minimizes the maximum eignenvalue of the 
iteration matrix. 

Restrictions on the time step are due to the finite differencing of the terms. The non- 
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linear terms are subject to  the Courant-Friedrichs-Lewy condition of At < As/uo, 
where As is the smallest grid spacing and uo is the largest velocity. The time centring 
of the Coriolis terms results in a time-step restriction of At 6 1/2Q. For the viscous 
terms the condition At/As < 1 should be satisfied for the finite-difference equation to 
correspond to  a continuum equation and for the round-off error to be small. The non- 
physical computational mode which arises from the finite differencing of the non- 
linear terms when a first-order equation in time is rasied to a second-order difference 
equation is eliminated by periodic averaging of the variables. 

4. Experimental results 
4.1. Homogeneous secular spin-up 

A single Iaboratory experiment was conducted to study the slow secular spin-up of a 
homogeneous fluid.? Both water baths were held at the same temperature (near room 
temperature) to  eliminate any initial density stratification. The values of the govern- 
ing parameters during the experiment were: Qo = 1.02 s-l, dQ/dt = 5.71 x 10-4s-2, 
R = 2.48 x The basic rotation period was 2n/Q0 = 6-2 s 
and the homogeneous spin-up time scale was T,  = 44.0 s, or only 7.1 rotational 
periods. The azimuthal velocity was measured using two neutrally buoyant floats of 
small size (diameter less than 0-05 cm). The horizontal positions of the plastic beads 
were periodically recorded on film using a slowly strobed horizontal beam of colli- 
mated light. The centre of the 0.7 cm thick light beam was located 0.3 cm above the 
mid-plane of the cylinder. The two floats were placed radially between 

and E = 4.96 x 

0 . 5 ~ ~  < r c 0*65r0, 

and thus were located in the interior of the fluid. 

fluid, and the theoretical interior horizontal velocity components, given by 
I n  the limit of vanishing stratification, the Ekman suction is felt throughout the 

become depth-independent (a consequence of the Taylor-Proudman effect). Since the 
two beads were a t  different mean radii, we have plotted in figure 5 the observed and 
theoretical (20) azimuthal velocities in terms of the non-dimensional angular velocity 
vo/r. Despite the relatively large estimate of the experimental errors, the observed 
data shows good agreement with theory for ho&ogeneous secular spin-up. As the 
container starts to  accelerate in the azimuthal direction, the interior of the fluid 
initially continues to rotate a t  its original angular velocity due to conservation of 
angular momentum. (In the accelerating reference frame, v o ( d F )  = r(e-t- l ) . )  With 
increasing time, the velocity difference between the container and fluid interior in- 
creases until the Ekman suction becomes sufficiently large for a balance to occur 
between the angular acceleration of the container and interior vortex stretching. The 

t Weidman (1976) has examined the rapid secular spin-up and spin-down of a homogeneous 
fluid and found that non-linear effects become important when TA 5 T,, where TA is the charac- 
teristic acceleration time scale defined by A T =  no/ IdCl/dtl. The one experiment discussed here 
was conducted within the linear regime since TA/Ts = 1/R + 1. 
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FIUURE 5. Comparison of observed and theoretical (20) angular velocities in fluid interior during 
secular homogeneous spin-up. The angular velocity of the container folIows the line t while the 
interior fluid after spin-up follows the asymptote t - 1. 

Ekman flux is returned to the interior uniformly in z via the Ea side-wall layer so that 
both the total vorticity ((c0) = 277~2)~) and the net angular momentum of the interior 
fluid increase with time. After several spin-up periods have elapsed, the angular 
velocity of the interior fluid lags the container by a constant amount (equal to ( d R / d t )  T, 
in dimensional units). 

A single numerical experiment was conducted to both test the code and simulate the 
homogeneous laboratory experiment. The numerical results both confirm the homo- 
geneous secular spin-up process described here and indicate that the inertial modes of 
the basin are only weakly excited by the secular forcing. The difference between the 
scaled numerical azimuthal velocity at the interior point (T = 0.5r0, z = 0) and (20) is 
plotted in figure 6; the lowest inertial mode (with a period = 4.3s) is just barely 
discernible in sharp contrast with the instantaneous spin-up results presented by 
Warn-Varnas et al. (1978). Since integration in time of the instantaneous forcing and 
response yields the secular forcing and response, the inertial modes in the secular case 
are reduced by a factor T,/4nT,, which is quite small (about 0.008) for the lowest 
axisymmetric inertial mode in this experiment. Figure 6 also indicates that the fluid 
spin-up occurs slightly faster in the numerical simulation than predicted by the analy- 
tic solution (20); the difference is small, however, and the negative trend shown in 
figure 6 could be removed if the dimensional spin-up time scale used to compute the 
theoretical solution was reduced by 1.2 yo. 
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FIGURE 6. Difference in angular velocity at mid-depth and mid-radius between theoretical model 
(20) and numerical experiment. T,is the period of the lowest inviscid natural inertial mode of the 
cylindrical container. 

tlTr 

4.2. StratiJed secular spin-up 
Several laboratory experiments were conducted to study secular spin-up in a ther- 
mally stratified rotating fluid. The dimensions of the cylindrical container and the 
assumed constant thermodynamic properties of the silicone oil used as the working 
fluid are given in table 1. The values of the various experimental parameters for the 
individual experiments are listed in table 2. Essentially, two sets of experiments were 
conducted corresponding to values of the Burger number of B = 0.64 and 1.25. The 
basic rotation rate s1, was varied to change B since the overall temperature contrast 
between the upper and lower water baths was held approximately constant. Several 
experiments were conducted with different angular acceleration rates to study the 
effect of increasing Rossby number on the same basic initial state. We found that, for 
both values of B, the scaled temperature data from the different experiments agreed 
within experimental uncertainty, indicating that the observed temperature field 
behaved in a linear manner over the parameter ranget 0.16 5 RIEh 5 1.5. For this 
reason we will describe the results of just one laboratory experiment [labelled no. 37 

t A linear dependence on R was also found by Saunders & Beardsley (1975) in the instan- 
taneous stratified spin-up experiments over the parameter range 1.1 5 R/E* 5 11.0. 
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H = 4.445 cm, R = 10.03 cm, v = 0.01172 cm2/s, 
u = 0.00134/°C, K = 0.000837 cma/s, Q = 14.0, po = 0.818 g/cm3. 

TABLE 1. Values of fixed or assumed constant experimental parameters. 

Exper- 
ment Na 
no. R, (rad/s) T, (8)  T,n,/277 10faR 10+BEB (reda/sZ) B 

36 1-076 39.6 6.8 0.37 2-35 
36 1.075 39.6 6.8 1.73 2.35 
N1 1.069 39.7 6.8 2-12 2.35 
37 1.069 39.7 6-8 3.31 2.35 
50 0.551 55.3 4.9 4.77 3.28 
51 0.552 55.3 4.9 2-40 3.28 
52 0.551 55.3 4.9 1.21 3.28 
53 0.551 55.3 4.9 0.62 3-28 

1.876 0.637 
1.891 0.639 
1.898 0-644 
1.898 0.644 
1.898 1-249 
1.898 1-248 
1.906 1.253 
1.913 1.256 

TABLE 2. Values of experimental parameters for laboratory and one numerical (Nl) secular 
spin-up experiments discussed in text. See text for parameter definitions. 

No. 1 

-6 O Y - *  N o ' 8  

l- 
0 0.8 1.6 1.4 3.2 4.0 4.8 5.6 0 0.8 1.6 2.4 3.1 4.0 4.8 5.6 

11 T, t lT, 
FIUURE 7 (a, b). For legend see facing page. 

in table 21, and compare it with both the model presented in 3 2 and the results of one 
numerical experiment (denoted Nl in table 2)) conducted within this parameter range. 
The Rossby number R was the only external parameter which differed between the two 
experiments (no. 37 and N1). The estimated measurement error in the laboratory 
temperature data obtained in experiment no. 37 is k 0.0052 "C or 4 yo of the 
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FIGURE 7 .  Comparison of non-dimensional perturbation temperatures : . . . , laboratory experi- 
ment no. 3 1 ;  ---- , numerical experiment N1; ~ , theoretical perturbation temperatures 
predicted by (12).  Positive temperature deviations are plotted downward so that the data 
correspond to non-dimensional density, with positive density deviations plotted upward. 
Thermistor number shown to right of corresponding data. The radial locations of the different 
time series are (a) r = 0.9375r0, ( b )  r = 0.875r0, ( c )  r = 0.75r0, (d) r = 0.5r0, and (e) r = 0. 
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perturbation temperature scale, Q, V l q .  The centrifugal component of the gravita- 
tional potential has been ignored in both theoretical and numerical models on the 
assumption that the steady-state Sweet-Eddington flow would be quite weak in the 
actual experiments. In  fact, Barcilon & Pedlosky (1967) show in their theoretical 
study of Sweet-Eddington flow that the maximum azimuthal velocity V,, scales like 

VSE = ( 2 V t 4 % ) l P  

in the convection regime (see their equation 4.30). In the secular stratified spin-up 
experiments described here, V,, was always < 1 %  of the spin-up velocity scale V 
given in (l), so that the neglect of centrifugal effects is indeed justified here. 

We will now briefly describe the stratified secular spin-up process defined by the 
asymptotic model developed in § 2. We saw in the homogeneous secular spin-up case 
that the Taylor-Proudman effect constrains the interior horizontal flow to be inde- 
pendent of depth and that the important meridional secondary circulation is closed by 
passive viscous boundary layers on the side wall. In a container with perfectly insulat- 
ing side walls, rather weak thermal stratification effectively inhibits vertical motion in 
the side-wall boundary layers, thus forcing the Ekman-layer flux to return directly to 
the interior via ‘jets ’ in the corner regions of the container. In the asymptotic theory, 
the orientation of this jet is slowly varying over the spin-up time scale, so that the 
pattern of the meridional circulation does not change much with time, especially for 
t greater than about l.5Ts. The resulting weak vertical advection of the (initially level) 
constant temperature surfaces creates the perturbation temperature field. Since the 
interior flow is to lowest order geostrophic and hydrostatic, the thermal wind rela- 
tionship (3)  holds with V,, = - &Tor. As the radial temperature increases with time over 
the inner region of the lower interior, the vertical shear of wo becomes more negative, 
causing the layer of fluid adjacent to the lower Ekman layer to accelerate more rapidly. 
Conservation of potential vorticity over the spin-up time scale implies an inward 
radial shift of positive vorticity without changing the total vorticity within each 
horizontal layer, and thus the interior azimuthal velocity vo(ro) at the side wall 
remains zero. Actually, the accelerating side wall acts as a source of positive vorticity 
which quickly diffuses into the fluid, creating the transient E i  layer required to satisfy 
the no-slip condition on the side wall. 

The non-dimensional perturbation temperatures observed in the laboratory (no. 
37) and numerical (Nl)  experiments are compared in figure 7 with the theoretical 
solution (1 2) given in 5 2. The data from each working thermistor is shown as solid 
circles in figure 7 and has been organized by the radial and vcrtical position of the 
thermistors. The reference number and position of eaoh thermistor is shown in figure 3. 
The numerical and theoretical behaviour a t  each thermistor location is shown by 
dashed and solid lines, respectively. We have chosen to reverse the temperature axis 
so that negative temperature deviations which correspond to positive density devia- 
tions are plotted upward. In  general, the observed and predicted perturbation tem- 
perature fields agree rather well. A continual upwelling of colder, denser fluid occurs 
near the outer edge of the basin with a broad downwelling of warmer, lighter fluid over 
most of the lower interior of the fluid to complete the meridional circulation. The 
quantitative agreement between experiments and theory is best near the centre of the 
basin. The major difference occurs near the side wall where the outermost ring of 
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FIUURE 8. Streamfunction observed in N1 a t  time (a)  t = 0.5TS and ( b )  t = 4.017,. Crosses 
indicate locations of thermistors used in laboratory experiment. The height of the theoretical 
radial velocity node in the lower Elrman layer is shown by Z , ,  where 1 + 2, = T E ~ .  

thermistors quickly becomes enveloped by the growing Ef layer. The experimental 
temperature data a t  thermistors no. 1 and no. 2 follow the theoretical prediction 
closely until t - 1.5?, then exhibit a slower increase with time than the essentially 
linear rise predicted. Both the vertical and radial temperature gradients are smaller 
than predicted near the lower, outer corner. The experimental data observed a t  ther- 
mistors no. 9 and no. 10 (see figure 7c) show a slight reversal in the secular temperature 
behaviour which indicates that  the actual circle of downwelling is smaller than 
predicted. 



180 R. C .  Beardsley and others 

0.8 0.9 I .o 

0.9 1 .o 
r h o  

FIGURE 9. Enlarged contour plots of the streamfunction and azimuthal velocity vo observed in 
N1 a t  time (a)  t = 0.5Ts and ( b )  t = l.OTs. Crosses indicate thermistor locations. The height of the 
radial velocity node is shown by Z,, where (1 +Z,) = T E ~ .  The radial location of the maximum 
streamfunction predicted at Z = - 1 by (10) is indicated by T,. 

The numerical model streamfunction is shown a t  time t = 0*5T, and 4.0Ts in figure 8. 
For reference, the (theoretical) height of the radial velocity node in the lower Ekman 
layer is indicated by Z,,  where ( 1  + 2,) = nE4. The thermistor locations are indicated 
by small crosses. The orientation of the lower corner jet does not change much over 
time, although the location of the maximum of the streamfunction does move slowly 
towards the centre with time. While the interior downwelling and vortex stretching is 
more intense near the lower Ekman layer, the non-dimensional vertical penetration 
scale for the lowest theoretical mode is large enough (8, N r,,/a, B = 0.92) that  the 
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FIGURE 10. Comparison of non-dimensional angular velocity divided by time at  time (a) t = 
l.OTs and ( b )  t = 4.0Ts: +-, observed in N1; - , predicted by (1  1). The interior solution is shown 
with and without the E i  layer correction. The profiles are shown a t  two levels, the mid-plane a t  
2 = 0, and at 2 = - 0-86, just above the lower Ekman layer. 

secondary circulation occurs throughout the interior of the basin. Thermistors 1-8 
and 13-20 are clearly located in the upwelling and downwelling zones respectively. 
As shown in figure 7c, weak upwelling occurs with increasing time a t  thermistors 9-12 
located a t  r = 0.75. This effect is better illustrated in figure 9, where the numerical 
streamfunction is shown for r 2 0.72. The radial position of the maximum of the 
interior streamfunction predicted at z = - 1 by (10) is indicated in figure 9 by rm. Since 
w = r -Y, ,  upwelling out of the lower Ekman layer occurs over a wider ring in the 
laboratory and numerical experiments than predicted by theory. 

The interior azimuthal velocity spin-up near the lower boundary is illustrated in 
figure 9, where we have plotted contours of v,, scaled by the side-wall value. The pro- 
nounced inward advection of the v,, contours near the lower corner is caused by the 
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Coriolis acceleration on radial displacement, i.e. vot = - 2u,. The v,, contours closely 
parallel bbe side wall, especially near the midplane of the basin a t  z = 0 during the 
early phases of spin-up. This structure illustrates the initial one-dimensional character 
of the transibnt Ef layer. 

A comparison between the theoretical (1  1 )  and numerical non-dimensional angular 
velocity scaled by time is shown in figure 1 0 .  The comparisons are made for two levels : 
the mid-plane ( z  = 0) and just above the lowest thermistors a t  z = - 0.86 (see figures 8 
or 9). Figure 10 indicates that the simple one-dimensional E i  boundary-layer correc- 
tion agrees well with the numerical vo profile a t  z = 0 throughout spin-up. At the lower 
level (z = - 0.86) which intersects the corner ‘jet’, the theoretical boundary-layer 
correction term overestimates the azimuthal velocity near the side wall. This effect, 
noticeable a t  t = l-OT,, becomes pronounced by t = 4.0T,, when the theory predicts 
the formation of a prograde zonal jet with azimuthal velocities greater than the maxi- 
mum velocity occurring at the side wall. As a ring of fluid enters the interior from the 
corner region, its radius about the rotation axis contracts and the azimuthal velocity 
increases by angular-momentum conservation. The viscous diffusion of positive 
vorticity from the accelerating side wall produces an additional positive torque on the 
fluid ring so that a net prograde velocity can occur on contraction. Since no prograde 
motion was observed in the numerical experiment, we conclude that the simple super- 
position of the interior and one-dimensional transient Ef layer solutions contained in 
( 1 1 )  breaks down near the corner region where a more complete theory is clearly 
needed. If a fluid ring near the corner entered the interior from a maximum radius 
which is less than predicted, the resulting azimuthal velocity would be less. Thus, the 
observed lack of a prograde jet is consistent with the‘experimentally observed inward 
increase in the radial width of the upwelling zone. Near the centre of the basin, angular 
velocity observed in N1 is slightly faster than predicted. Near r = 0, the observed 
and predicted velocities agree if the theoretical spin-up time scale T,  is decreased by 
5-8 %. 

5. Conclusion 
We have examined the secular spin-up of a thermally stratified fluid in both a 

laboratory and a numerical model and find good qualitative agreement between the 
observed interior temperature and azimuthal velocity fields and the simple asymptotic 
theory presented in 5 2. The structure of the transient side-wall boundary layer becomes 
more complicated near the corner regions where we believe the additional vorticity 
added through lateral viscous diffusion causes a decrease in the vertical flux out of the 
lower Ekman layer near the corner. This in turn forces an inward shift of the upwelling 
zone since the net outflux from the bottom Ekman layer is controlled through con- 
tinuity by the difference between the interior and bottom boundary vorticity and 
should remain relatively constant in time after t N 1.5T8. The streamfunction maxi- 
mum observed in N1 varied less than 5 %  over the time interval between 1 . 5  and 
5-0I;i. 

The relatively good agreement between experiment and theory found in these 
secular spin-up experiments is in sharp contrast with the results of the instantaneous 
spin-up experiments summarized in $ 1 .  The experimental spin-up time scale was 
about 5-8 yo faster than predicted in the secular case while, in the instantaneous case, 



Secular spin-up of a stratijied rota.ting fluid 183 

the lowest mode spin-up time was roughly 30-60 yo faster than predicted. The differ- 
ence is due to the very weak excitation of inertial-gravity-wave transients in both 
homogeneous and stratified numerical experiments by the secular forcing. Thus the 
asymptotic theory which has filtered out these initial higher-frequency transients is 
accurate even though the inertial period is not much smaller than the spin-up time 
scale. 
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